Chapter 3 – Periodic Functions

“Try It” Exercises

Section 3.1 – Graphs of the Sine and Cosine Functions

1. 6π

2. [latex]\frac{1}{2}[/latex] compressed

3. [latex]\frac{π}{2}[/latex]; right

4. 2 units up

5.

midline: y=0; amplitude: |A|=12; period: [latex]P=\frac{2π}{|B|}=6π[/latex]; phase shift: [latex]\frac{C}{B}[/latex]=π

6. f(x)=sin(x)+2

7. two possibilities: [latex]y=4sin(\frac{π}{5}x−\frac{π}{5}+4)[/latex] or [latex]y=−4sin(\frac{π}{5}x+\frac{4π}{5}+4)[/latex]

8.

image

midline: y=0; amplitude: |A|=0.8; period: [latex]P=\frac{2π}{|B|}=π[/latex]; phase shift: [latex]\frac{C}{B}=0[/latex] or none

9.

image

midline: y=0; amplitude: |A|=2; period: [latex]P=\frac{2π}{|B|}=6[/latex]; phase shift: [latex]\frac{C}{B}=−12[/latex]

10. 7

image

11. y=3cos(x)−4

image

Section 3.2 – Graphs of the Other Trigonometric Functions

1.

image

2. It would be reflected across the line y=−1, becoming an increasing function.

3. g(x)=4tan(2x)

4. This is a vertical reflection of the preceding graph because A is negative.

image

5.

image

6.

image

7.

image

Section 3.3 – Inverse Functions

1. h(2)=6

2. No

3. Yes

4. The domain of function [latex]f^{−1}[/latex] is (−∞,−2) and the range of function [latex]f^{−1}[/latex] is (1,∞).

5.

  • ⓐ f(60)=50. In 60 minutes, 50 miles are traveled.
  • ⓑ[latex]f^{−1}(60)[/latex]=70. To travel 60 miles, it will take 70 minutes.

6. a. 3; b. 5.6

7. x=3y+5

8. [latex]f^{−1}(x)=(2−x)^2[/latex]; domain of f: [0,∞); domain of f−1: (−∞,2]

9.

image

Section 3.4 – Inverse Trigonometric Functions

1. arccos(0.8776)≈0.5

2.

ⓐ [latex]−\frac{π}{2}[/latex];

ⓑ [latex]−\frac{π}{4}[/latex];

ⓒ π;

ⓓ [latex]\frac{π}{3}[/latex]

3. 1.9823 or 113.578°

4. [latex]sin^{−1}(0.6)=36.87​∘=0.6435[/latex] radians

5. [latex]\frac{π}{8};\frac{2π}{9}[/latex]

6. [latex]\frac{3π}{4}[/latex]

7. [latex]\frac{12}{13}[/latex]

8. [latex]\frac{4\sqrt{2}}{9}[/latex]

9. [latex]\frac{4x}{\sqrt{16x^2+1}}[/latex]

Section Exercises

Section 3.1 – Graphs of the Sine and Cosine Functions

1. The sine and cosine functions have the property that f(x+P)=f(x) for a certain P. This means that the function values repeat for every P units on the x-axis.

3. The absolute value of the constant A (amplitude) increases the total range and the constant D (vertical shift) shifts the graph vertically.

5. At the point where the terminal side of t intersects the unit circle, you can determine that the sin t equals the y-coordinate of the point.

7.

image

amplitude: [latex]\frac{2}{3}[/latex]; period: 2π; midline: y=0; maximum: [latex]y=\frac{2}{3}[/latex] occurs at x=0; minimum: [latex]y=-\frac{2}{3}[/latex] occurs at x=π; for one period, the graph starts at 0 and ends at 2π

9.

image

amplitude: 4; period 2π; midline: y=0; maximum y=4 occurs at [latex]x=\frac{π}{2}[/latex]; minimum: y=−4 occurs at [latex]x=\frac{3π}{2}[/latex]; one full period occurs from x=0 to x=2π

11.

image

amplitude: 1; period π; midline: y=0; maximum: y=1 occurs at x=π; minimum: y=−1 occurs at [latex]x=\frac{π}{2}[/latex]; one full period is graphed from x=0 to x=π

13.

image

amplitude: 4; period: 2; midline y=0; maximum: y=4 occurs at x=0; minimum: y=−4 occurs at x=1

15.

image

amplitude: 3; period [latex]\frac{π}{4}[/latex]; midline: y=5; maximum: y=8 occurs at x=0.12; minimum: y=2 occurs at x=0.516; horizontal shift: −4; vertical translation 5; one period occurs from x=0 to [latex]x=\frac{π}{4}[/latex]

17.

image

amplitude: 5; period [latex]\frac{2π}{5}[/latex]; midline: y=−2; maximum: y=3 occurs at x=0.08; minimum: y=−7 occurs at x=0.71; phase shift: −4; vertical translation: −2; one full period can be graphed on x=0 to x=[latex]\frac{2π}{5}[/latex]

19.

image

amplitude: 1 ; period 2π; midline: y=1; maximum: y=2 occurs at x=2.09; maximum: y=2 occurs at t=2.09; minimum: y=0 occurs at t=5.24; phase shift: [latex]−\frac{π}{3}[/latex]; vertical translation: 1; one full period is from t=0 to t=2π

21.

image

amplitude: 1; period 4π; midline: y=0; maximum: y=1 occurs at t=11.52; minimum: y=−1 occurs at t=5.24; phase shift: [latex]-\frac{10π}{3}[/latex]; vertical shift: 0

23. amplitude: 2; midline: y=−3; period: 4; equation: [latex]f(x)=2sin(\frac{π}{2}x)−3[/latex]

25. amplitude: 2; period: 5; midline: y=3; equation: [latex]f(x)=−2cos(\frac{2π}{5}x)+3[/latex]

27. amplitude: 4; period: 2; midline: y=0; equation: [latex]f(x)=−4cos(π(x−\frac{π}{2})[/latex]

29. amplitude: 2; period: 2; midline: y=1; equation: [latex]f(x)=2cos(πx)+1[/latex]

31. 0,π

33. [latex]sin(\frac{π}{2})=1[/latex]

35. [latex]\frac{π}{2}[/latex]

37. f(x)=sin(x) is symmetric

39. [latex]\frac{π}{3}[/latex],[latex]\frac{5π}{3}[/latex]

41. Maximum: 1 at x=0 ; minimum: −1 at x=π

43. A linear function is added to a periodic sine function. The graph does not have an amplitude because as the linear function increases without bound the combined function h(x)=x+sin(x) will increase without bound as well. The graph is bounded between the graphs of y=x+1 and y=x−1 because sine oscillates between −1 and 1.

image

45. There is no amplitude because the function is not bounded.

image

47. The graph is symmetric with respect to the y-axis and there is no amplitude because the function’s bounds decrease as |x| grows. There appears to be a horizontal asymptote at y=0 .

image

Section 3.2 – Graphs of the Other Trigonometric Functions

1. Since y=csc x is the reciprocal function of y=sin x, you can plot the reciprocal of the coordinates on the graph of y=sin x to obtain the y-coordinates of y=csc x. The x-intercepts of the graph y=sin x are the vertical asymptotes for the graph of y=csc x.

3. Answers will vary. Using the unit circle, one can show that tan(x+π)=tan x.

5. The period is the same: 2π.

7. IV

9. III

11. period: 8; horizontal shift: 1 unit to left

13. 1.5

15. 5

17. −cot(x)cos(x)−sin(x)

19.

image

stretching factor: 2; period [latex]\frac{π}{4}[/latex]; asymptotes: [latex]x=\frac{1}{4}(\frac{π}{2}+πk)+8[/latex], where k is an integer

21.

image

stretching factor: 6; period: 6; asymptotes x=3k, where k is an integer

23.

image

stretching factor: 1; period π; asymptotes: x=πk, where k is an integer

25.

image

Stretching factor: 1; period π; asymptotes: [latex]x=\frac{π}{4}+πk[/latex], where k is an integer

27.

image

stretching factor: 2; period 2π; asymptotes: x=πk, where k is an integer

29.

image

stretching factor: 4; period [latex]\frac{2π}{3}[/latex]; asymptotes: [latex]x=\frac{π}{6}k[/latex], where k is an odd integer

31.

image

stretching factor: 7; period [latex]\frac{2π}{5}[/latex]; asymptotes: [latex]x=\frac{π}{10}k[/latex], where k is an odd integer

33.

image

stretching factor: 2; period 2π; asymptotes: x=[latex]−\frac{π}{4}+πk[/latex], where k is an integer

35.

image

stretching factor [latex]\frac{7}{5}[/latex]; period: 2π; asymptotes: [latex]x=\frac{π}{4}+πk[/latex], where k is an integer

37. [latex]y=tan(3(x−\frac{π}{4}))+2[/latex]

image

39. f(x)=css(2x)

41. f(x)=csc(4x)

43. f(x)=2csc(x)

45. [latex]f(x)=\frac{1}{2}tan(100πx)[/latex]

47.

image

49.

image

51.

image

53.

image

55.

ⓐ([latex]−\frac{π}{2}[/latex], [latex]\frac{π}{2}[/latex]);

image

ⓒ [latex]x=−\frac{π}{2}[/latex] and [latex]x=\frac{π}{2}[/latex]; the distance grows without bound as |x| approaches [latex]\frac{π}{2}[/latex] —i.e., at right angles to the line representing due north, the boat would be so far away, the fisherman could not see it;

ⓓ3; when [latex]x=−\frac{π}{3}[/latex], the boat is 3 km away;

ⓔ 1.73; when [latex]x=\frac{π}{6}[/latex], the boat is about 1.73 km away;

ⓕ 1.5 km; when x=0

57.

ⓐ [latex]h(x)=2tan\frac{π}{120}x[/latex];

image

ⓒ h(0)=0: after 0 seconds, the rocket is 0 mi above the ground; h(30)=2: after 30 seconds, the rockets is 2 mi high;

ⓓAs x approaches 60 seconds, the values of h(x) grow increasingly large. The distance to the rocket is growing so large that the camera can no longer track it.

Section 3.3 – Inverse Functions

1. Each output of a function must have exactly one output for the function to be one-to-one. If any horizontal line crosses the graph of a function more than once, that means that y -values repeat and the function is not one-to-one. If no horizontal line crosses the graph of the function more than once, then no y -values repeat and the function is one-to-one.

3. Yes. For example, [latex]f(x)=\frac{1}{x}[/latex] is its own inverse.

5. Given a function y=f(x), solve for x in terms of y. Interchange the x and y. Solve the new equation for y. The expression for y is the inverse, [latex]y=f^{−1}(x)[/latex].

7. [latex]f^{−1}(x)=x−3[/latex]

9. [latex]f^{−1}(x)=2−x[/latex]

11. [latex]f^{−1}(x)=\frac{−2x}{x−1}[/latex]

13. domain of [latex]f(x): [−7,∞); f^{−1}(x)=\sqrt{x}−7[/latex]

15. domain of [latex]f(x): [0,∞); f^{−1}(x)=\sqrt{x+5}[/latex]

16.

  • ⓐ f(g(x))=x and g(f(x))=x.
  • ⓑ This tells us that f and g are inverse functions

17. f(g(x))=x, g(f(x))=x

19. one-to-one

21. one-to-one

23. not one-to-one

25. 3

27. 2

29.

image

31. [2,10]

33. 6

35. −4

37. 0

39. 1

41.

x

1

4

7

12

16

[latex]f^{−1}(x)[/latex]

3

6

9

13

14

43. [latex]f^{−1}(x)=(1+x)^{\frac{1}{3}}[/latex]

image

45. [latex]f^{−1}(x)=\frac{5}{9}(x−32)[/latex]. Given the Fahrenheit temperature, x, this formula allows you to calculate the Celsius temperature.

47. [latex]t(d)=\frac{d}{50}, t(180)=\frac{180}{50}[/latex]. The time for the car to travel 180 miles is 3.6 hours.

Section 3.4 – Inverse Trigonometric Functions

1. The function y=sin(x) is one-to-one on [[latex]−\frac{π}{2}[/latex][latex],\frac{π}{2}[/latex]]; thus, this interval is the range of the inverse function of [latex]y=sin(x), f(x)=sin^{−1}x[/latex]. The function y=cos(x) is one-to-one on [0,π]; thus, this interval is the range of the inverse function of [latex]y=cos(x), f(x)=cos^{−1}x[/latex].

3. [latex]\frac{π}{6}[/latex] is the radian measure of an angle between [latex]−\frac{π}{2}[/latex] and [latex]\frac{π}{2}[/latex] whose sine is 0.5.

5. In order for any function to have an inverse, the function must be one-to-one and must pass the horizontal line test. The regular sine function is not one-to-one unless its domain is restricted in some way. Mathematicians have agreed to restrict the sine function to the interval [[latex]−\frac{π}{2}[/latex],[latex]\frac{π}{2}[/latex]] so that it is one-to-one and possesses an inverse.

7. True . The angle, [latex]θ_1[/latex] that equals arccos(−x) , x>0 , will be a second quadrant angle with reference angle, [latex]θ_2[/latex] , where [latex]θ_2[/latex] equals arccosx , x>0 . Since [latex]θ2[/latex] is the reference angle for [latex]θ_1[/latex] , [latex]θ_2=π−θ_1[/latex] and arccos(−x) = π−arccosx

9. [latex]−\frac{π}{6}[/latex]

11. [latex]\frac{3π}{4}[/latex]

13. [latex]−\frac{π}{3}[/latex]

15. [latex]\frac{π}{3}[/latex]

17. 1.98

19. 0.93

21. 1.41

23. 0.56 radians

25. 0

27. 0.71

29. -0.71

31. [latex]−\frac{π}{4}[/latex]

33. 0.8

35. 513

37. [latex]\frac{x−1}{\sqrt{−x^2+2x}}[/latex]

39. [latex]\frac{\sqrt{x^2−1}}{x}[/latex]

41. [latex]\frac{x+0.5}{\sqrt{−x^2−x+\frac{3}{4}}}[/latex]

43. [latex]\frac{\sqrt{2x+1}}{x+1}[/latex]

45. [latex]\frac{\sqrt{2x+1}}{x}[/latex]

47. [latex]t[/latex]

49.

image

domain [−1,1]; range [0,π]

51. approximately x=0.00

53. 0.395 radians

55. 1.11 radians

57. 1.25 radians

59. 0.405 radians

61. No. The angle the ladder makes with the horizontal is 60 degrees.

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Topics in Precalculus Copyright © by Sage Bentley; An Do; Carolyn Luna; Stephen Pena; and Phillip Saldivar is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book