Chapter 2 – Trigonometric Functions
“Try It” Exercises
Section 2.1 – Angles
1.
2. [latex]\frac{3π}{2}[/latex]
3. −135°
4. [latex]\frac{7π}{10}[/latex]
5. [latex]α[/latex] = 150°
6. [latex]β[/latex] = 60°
7. [latex]\frac{7π}{6}[/latex]
8. [latex]\frac{215π}{8}[/latex] = 37.525 units
9. 1.88
10. −[latex]\frac{3π}{2}[/latex] rad/s
11. 1655 kilometers per hour
Section 2.2 – Unit Circle: Sine and Cosine Functions
1. [latex]cos(t)[/latex] = −[latex]\frac{\sqrt{2}}{2}[/latex], [latex]sin(t)[/latex] = [latex]\frac{\sqrt{2}}{2}[/latex]
2. [latex]cos(π)[/latex] = −1, [latex]sin(π)[/latex] = 0
3. [latex]sin(t)[/latex] = −[latex]\frac{7}{25}[/latex]
4. [latex]\frac{π}{3}[/latex]
5. ⓐ [latex]cos[/latex](315°) = [latex]\frac{\sqrt{2}}{2}[/latex], [latex]sin[/latex](315°) = –[latex]\frac{\sqrt{2}}{2}[/latex]
ⓑ [latex]cos[/latex](−[latex]\frac{π}{6}[/latex]) = [latex]\frac{\sqrt{3}}{2}[/latex], [latex]sin[/latex](−[latex]\frac{π}{6}[/latex]) = −[latex]\frac{1}{2}[/latex]
6. ([latex]\frac{1}{2}[/latex], −[latex]\frac{\sqrt{3}}{2}[/latex])
Section 2.3 – The Other Trigonometric Functions
1. [latex]sin t[/latex] = −[latex]\frac{\sqrt{2}}{2}[/latex], [latex]cos t[/latex] = [latex]\frac{\sqrt{2}}{2}[/latex], [latex]tan t[/latex] = −1, [latex]sec t[/latex] = [latex]\sqrt{2}[/latex], [latex]csc t[/latex] = −[latex]\sqrt{2}[/latex], [latex]cot t[/latex] = −1
2. [latex]sin[/latex] [latex]\frac{π}{3}[/latex] = [latex]\frac{\sqrt{3}}{2}[/latex], [latex]cos[/latex] [latex]\frac{π}{3}[/latex] = [latex]\frac{1}{2}[/latex], [latex]tan[/latex] [latex]\frac{π}{3}[/latex]= [latex]\sqrt{3}[/latex], [latex]sec[/latex] [latex]\frac{π}{3}[/latex] = 2, [latex]csc[/latex] [latex]\frac{π}{3}[/latex] = [latex]\frac{2\sqrt{3}}{3}[/latex], [latex]cot[/latex] [latex]\frac{π}{3}[/latex] = [latex]\frac{\sqrt{3}}{3}[/latex]
3. [latex]sin[/latex] (−[latex]\frac{7π}{4}[/latex]) = [latex]\frac{\sqrt{2}}{2}[/latex], [latex]cos[/latex] (−[latex]\frac{7π}{4}[/latex]) = [latex]\frac{\sqrt{2}}{2}[/latex], [latex]tan[/latex] (−[latex]\frac{7π}{4}[/latex]) = 1,
[latex]sec[/latex] −([latex]\frac{7π}{4}[/latex]) = [latex]\sqrt{2}[/latex], [latex]csc[/latex] (−[latex]\frac{7π}{4}[/latex]) = [latex]\sqrt{2}[/latex], [latex]cot[/latex] (−[latex]\frac{7π}{4}[/latex]) = 1
4. −[latex]\sqrt{3}[/latex]
5. −[latex]\sqrt{2}[/latex]
6. [latex]sin t[/latex]
7. [latex]cos t[/latex] = −[latex]\frac{8}{17}[/latex], [latex]sin t[/latex] = [latex]\frac{15}{17}[/latex], [latex]tan t[/latex] = −[latex]\frac{15}{8}[/latex], [latex]csc t[/latex] = [latex]\frac{17}{15}[/latex], [latex]cot t[/latex] = −[latex]\frac{8}{15}[/latex]
8.
9. [latex]sec t[/latex] = [latex]\sqrt{2}[/latex], [latex]csc t[/latex] = [latex]\sqrt{2}[/latex], [latex]tan t[/latex] = 1, [latex]cot t[/latex] = 1
Section 2.4 – Right Triangle Trigonometry
1. [latex]\frac{7}{25}[/latex]
2.
3. [latex]sin[/latex] ([latex]\frac{π}{4}[/latex]) = [latex]\frac{1}{\sqrt{2}}[/latex], [latex]cos[/latex] ([latex]\frac{π}{4}[/latex]) = [latex]\frac{1}{\sqrt{2}}[/latex], [latex]tan[/latex]([latex]\frac{π}{4}[/latex]) = 1,
[latex]sec[/latex] ([latex]\frac{π}{4}[/latex]) = [latex]\sqrt{2}[/latex], [latex]csc[/latex] ([latex]\frac{π}{4}[/latex]) = [latex]\sqrt{2}[/latex], [latex]cot[/latex] ([latex]\frac{π}{4}[/latex]) = 1
4. 2
5. adjacent = [latex]10[/latex]; opposite = [latex]10\sqrt{3}[/latex]; missing angle is [latex]\frac{π}{6}[/latex]
6. About 52 ft
Section Exercises
Section 2.1 – Angles
1.
3. Whether the angle is positive or negative determines the direction. A positive angle is drawn in the counterclockwise direction, and a negative angle is drawn in the clockwise direction.
5. Linear speed is a measurement found by calculating distance of an arc compared to time. Angular speed is a measurement found by calculating the angle of an arc compared to time.
7.
9.
11.
13.
15.
17. 240°
19. [latex]\frac{4π}{3}[/latex]
21. [latex]\frac{2π}{3}[/latex]
23. [latex]\frac{7π}{2}[/latex] ≈ 11.00 in2
25. [latex]\frac{81π}{20}[/latex] ≈ 12.72 cm2
27. 20°
29. 60°
31. −75°
33. [latex]\frac{π}{2}[/latex] radians
35. −[latex]3π[/latex] radians
37. [latex]π[/latex] radians
39. [latex]\frac{5π}{6}[/latex] radians
41. [latex]\frac{5.02π}{3}[/latex] ≈ 5.26 miles
43. [latex]\frac{25π}{9}[/latex] ≈ 8.73 centimeters
45. [latex]\frac{21π}{10}[/latex] ≈ 6.60 meters
47. 104.7198 cm2
49. 0.7697 in2
51. 250°
53. 320°
55. [latex]\frac{4π}{3}[/latex]
57. [latex]\frac{8π}{9}[/latex]
59. 1320 rad 210.085 RPM
61. 7 in./s, 4.77 RPM, 28.65 deg/s
63. 1,809,557.37 mm/min=30.16 m/s
65. 5.76 miles
67. 120°
69. 794 miles per hour
71. 2,234 miles per hour
73. 11.5 inches
Section 2.2 – Unit Circle: Sine and Cosine Functions
1. The unit circle is a circle of radius 1 centered at the origin.
3. Coterminal angles are angles that share the same terminal side. A reference angle is the size of the smallest acute angle, [latex]t[/latex], formed by the terminal side of the angle [latex]t[/latex] and the horizontal axis.
5. The sine values are equal.
7. I
9. IV
11. [latex]\frac{\sqrt{3}}{2}[/latex]
13. [latex]\frac{1}{2}[/latex]
15. [latex]\frac{\sqrt{2}}{3}[/latex]
17. 0
19. −1
21. [latex]\frac{\sqrt{3}}{2}[/latex]
23. 60°
25. 80°
27. 45°
29. [latex]\frac{π}{3}[/latex]
31. [latex]\frac{π}{3}[/latex]
33. [latex]\frac{π}{8}[/latex]
35. 60°, Quadrant IV, [latex]sin[/latex] (300°) = −[latex]\frac{\sqrt{3}}{2}[/latex], [latex]cos[/latex] (300°) = [latex]\frac{1}{2}[/latex]
37. 45°, Quadrant II, [latex]sin[/latex] (135°) = [latex]\frac{\sqrt{2}}{2}[/latex], [latex]cos[/latex] (135°) = −[latex]\frac{\sqrt{2}}{2}[/latex]
39. 60°, Quadrant II, [latex]sin[/latex] (120°) = [latex]\frac{\sqrt{3}}{2}[/latex], [latex]cos[/latex] (120°) = −[latex]\frac{1}{2}[/latex]
41. 30°, Quadrant II, [latex]sin[/latex] (150°) = [latex]\frac{1}{2}[/latex], [latex]cos[/latex] (150°) = −[latex]\frac{\sqrt{3}}{2}[/latex]
43. [latex]\frac{π}{6}[/latex], Quadrant III, [latex]sin[/latex] ([latex]\frac{7π}{6}[/latex]) = −[latex]\frac{1}{2}[/latex], [latex]cos[/latex] ([latex]\frac{7π}{6}[/latex]) = −[latex]\frac{\sqrt{3}}{2}[/latex]
45. [latex]\frac{π}{4}[/latex], Quadrant II, [latex]sin[/latex] ([latex]\frac{3π}{4}[/latex]) = [latex]\frac{\sqrt{2}}{2}[/latex], [latex]cos[/latex] ([latex]\frac{3π}{4}[/latex]) = −[latex]\frac{\sqrt{2}}{2}[/latex]
47. [latex]\frac{π}{3}[/latex], Quadrant II, [latex]sin[/latex] ([latex]\frac{2π}{3}[/latex]) = [latex]\frac{\sqrt{3}}{2}[/latex], [latex]cos[/latex] ([latex]\frac{2π}{3}[/latex]) = −[latex]\frac{1}{2}[/latex]
49. [latex]\frac{π}{4}[/latex], Quadrant IV, [latex]sin[/latex] ([latex]\frac{7π}{4}[/latex]) = −[latex]\frac{\sqrt{2}}{2}[/latex], [latex]cos[/latex] ([latex]\frac{7π}{4}[/latex]) = [latex]\frac{\sqrt{2}}{2}[/latex]
51. [latex]\frac{\sqrt{77}}{9}[/latex]
53. −[latex]\frac{\sqrt{15}}{4}[/latex]
55. (−10, [latex]10\sqrt{3}[/latex])
57. (–2.778, 15.757)
59. [–1, 1]
61. [latex]sin t[/latex] = [latex]\frac{1}{2}[/latex], [latex]cos t[/latex] = −[latex]\frac{\sqrt{3}}{2}[/latex]
63. [latex]sin t[/latex] = −[latex]\frac{\sqrt{2}}{2}[/latex], [latex]cos t[/latex] = −[latex]\frac{\sqrt{2}}{2}[/latex]
65. [latex]sin t[/latex] = [latex]\frac{\sqrt{3}}{2}[/latex], [latex]cos t[/latex] = −[latex]\frac{1}{2}[/latex]
67. [latex]sin t[/latex] = −[latex]\frac{\sqrt{2}}{2}[/latex], [latex]cos t[/latex] = [latex]\frac{\sqrt{2}}{2}[/latex]
69. [latex]sin t[/latex] = 0, [latex]cos t[/latex] = −1
71. [latex]sin t[/latex] = −0.596, [latex]cos t[/latex] = 0.803
73. [latex]sin t[/latex] = [latex]\frac{1}{2}[/latex], [latex]cos t[/latex] = [latex]\frac{\sqrt{3}}{2}[/latex]
75. [latex]sin t[/latex] = −[latex]\frac{1}{2}[/latex], [latex]cos t[/latex] = [latex]\frac{\sqrt{3}}{2}[/latex]
77. [latex]sin t[/latex] = 0.761, [latex]cos t[/latex] = −0.649
79. [latex]sin t[/latex] = 1, [latex]cos t[/latex] = 0
81. [latex]\frac{\sqrt{2}}{4}[/latex]
83. −[latex]\frac{\sqrt{6}}{4}[/latex]
85. [latex]\frac{\sqrt{2}}{4}[/latex]
87. [latex]\frac{\sqrt{2}}{4}[/latex]
89. 0
91. (0, –1)
93. 37.5 seconds, 97.5 seconds, 157.5 seconds, 217.5 seconds, 277.5 seconds, 337.5 seconds
Section 2.3 – The Other Trigonometric Functions
1. Yes, when the reference angle is [latex]\frac{π}{4}[/latex] and the terminal side of the angle is in quadrants I and III. Thus, at [latex]x[/latex] = [latex]\frac{π}{4}[/latex], [latex]\frac{5π}{4}[/latex], the sine and cosine values are equal.
3. Substitute the sine of the angle in for [latex]y[/latex] in the Pythagorean Theorem [latex]x^2[/latex] + [latex]y^2[/latex] = [latex]1[/latex]. Solve for [latex]x[/latex] and take the negative solution.
5. The outputs of tangent and cotangent will repeat every [latex]π[/latex] units.
7. [latex]\frac{2\sqrt{3}}{3}[/latex]
9. [latex]\sqrt{3}[/latex]
11. [latex]\sqrt{2}[/latex]
13. 1
15. 2
17. [latex]\frac{\sqrt{3}}{3}[/latex]
19. −[latex]\frac{2\sqrt{3}}{3}[/latex]
21. [latex]\sqrt{3}[/latex]
23. −[latex]\sqrt{2}[/latex]
25. −1
27. −2
29. −[latex]\frac{\sqrt{3}}{3}[/latex]
31. 2
33. [latex]\frac{\sqrt{3}}{3}[/latex]
35. −2
37. −1
39. If [latex]sin t[/latex] = −[latex]\frac{2\sqrt{2}}{3}[/latex], [latex]sec t[/latex] = −3, [latex]csc t[/latex] = −[latex]\frac{3\sqrt{2}}{4}[/latex], [latex]tan t[/latex] = [latex]2\sqrt{2}[/latex], [latex]cot t[/latex] = [latex]\frac{\sqrt{2}}{4}[/latex]
41. [latex]sec t[/latex] = 2, [latex]csc t[/latex] = [latex]\frac{2\sqrt{3}}{3}[/latex], [latex]tan t[/latex] = [latex]\sqrt{3}[/latex], [latex]cot t[/latex] = [latex]\frac{\sqrt{3}}{3}[/latex]
43. −[latex]\frac{\sqrt{2}}{2}[/latex]
45. 3.1
47. 1.4
49. [latex]sin t[/latex] = [latex]\frac{\sqrt{2}}{2}[/latex], [latex]cos t[/latex] = [latex]\frac{\sqrt{2}}{2}[/latex], [latex]tan t[/latex] = 1, [latex]cot t[/latex] = 1, [latex]sec t[/latex] = [latex]\sqrt{2}[/latex], [latex]csc t[/latex] = [latex]\sqrt{2}[/latex]
51. [latex]sin t[/latex] = −[latex]\frac{\sqrt{3}}{2}[/latex], [latex]cos t[/latex] = −[latex]\frac{1}{2}[/latex], [latex]tan t[/latex] = [latex]\sqrt{3}[/latex], [latex]cot t[/latex] = [latex]\frac{\sqrt{3}}{3}[/latex], [latex]sec t[/latex] = −2, [latex]csc t[/latex] = −[latex]\frac{2\sqrt{3}}{3}[/latex]
53. [latex]sin t[/latex] ≈ 0.79
55. [latex]csc t[/latex] ≈ 1.16
57. even
59. even
61. [latex]\frac{sin t}{cos t}[/latex] = [latex]tan t[/latex]
63. 13.77 hours, period: [latex]1000π[/latex]
65. 7.73 inches
Section 2.4 – Right Triangle Trigonometry
1.
3. The tangent of an angle is the ratio of the opposite side to the adjacent side.
5. For example, the sine of an angle is equal to the cosine of its complement; the cosine of an angle is equal to the sine of its complement.
7. [latex]\frac{π}{6}[/latex]
9. [latex]\frac{π}{4}[/latex]
11. [latex]b[/latex] = [latex]\frac{20\sqrt{3}}{3}[/latex], [latex]c[/latex] = [latex]\frac{40\sqrt{3}}{3}[/latex]
13. [latex]a[/latex] = 10,000, [latex]c[/latex] = 10,000.5
15. [latex]b[/latex] = [latex]\frac{5\sqrt{3}}{3}[/latex], [latex]c[/latex] = [latex]\frac{10\sqrt{3}}{3}[/latex]
17. [latex]\frac{5\sqrt{29}}{29}[/latex]
19. [latex]\frac{5}{2}[/latex]
21. [latex]\frac{\sqrt{29}}{2}[/latex]
23. [latex]\frac{5\sqrt{41}}{41}[/latex]
25. [latex]\frac{5}{4}[/latex]
27. [latex]\frac{\sqrt{41}}{4}[/latex]
29. [latex]c[/latex] = 14, [latex]b[/latex] = 73
31. [latex]a[/latex] = 15, [latex]b[/latex] = 15
33. 188.3159
35. 200.6737
37. 498.3471 ft
39. 1060.09 ft
41. 27.372 ft
43. 22.6506 ft
45. 368.7633 ft