Chapter 4 – Trigonometric Identities and Equations

“Try It” Exercises

Section 4.1 – Solving Trigonometric Equations with Identities

1.

image

 

 

 

 

2.

image

 

 

 

 

3.

image

 

 

 

4. This is a difference of squares formula: 25 − 9 [latex]sin^2[/latex] [latex]θ[/latex] = (5 − 3 [latex]sin[/latex] [latex]θ[/latex])(5 + 3 [latex]sin[/latex] [latex]θ[/latex]).

5.

image

Section 4.2 – Sum and Difference Identities

1. [latex]\frac{\sqrt{2} + \sqrt{6}}{4}[/latex]

2. [latex]\frac{\sqrt{2} − \sqrt{6}}{4}[/latex]

3. [latex]\frac{1 − \sqrt{3}}{1 + \sqrt{3}}[/latex]

4. [latex]cos[/latex] ([latex]\frac{5π}{14}[/latex])

5.

image

 

 

 

 

Section 4.3 – Double-Angle, Half-Angle, and Reduction Formulas

1. [latex]cos[/latex] ([latex]2α[/latex]) = [latex]\frac{7}{32}[/latex]

2. [latex]cos^4[/latex] [latex]θ[/latex] − [latex]sin^4[/latex] [latex]θ[/latex] = ([latex]cos^2[/latex] [latex]θ[/latex] + [latex]sin^2[/latex] [latex]θ[/latex])([latex]cos^2[/latex] [latex]θ[/latex] − [latex]sin^2[/latex] [latex]θ[/latex]) = [latex]cos[/latex] ([latex]2θ[/latex])

3. [latex]cos[/latex] ([latex]2θ[/latex]) [latex]cos[/latex] [latex]θ[/latex] = ([latex]cos^2[/latex] [latex]θ[/latex] − [latex]sin^2[/latex] [latex]θ[/latex]) [latex]cos[/latex] [latex]θ[/latex] = [latex]cos^3[/latex] [latex]θ[/latex] − [latex]cos[/latex] [latex]θ[/latex] [latex]sin^2[/latex] [latex]θ[/latex]

4.

image

 

 

5. [latex]{−2}{\sqrt{5}}[/latex]

Section 4.4 – Sum-to-Product and Product-to-Sum Formulas

1. [latex]\frac{1}{2}[/latex] ([latex]cos[/latex] [latex]6θ[/latex] + [latex]cos[/latex] [latex]2θ[/latex])

2. [latex]\frac{1}{2}[/latex] ([latex]sin[/latex] [latex]2x[/latex] + [latex]sin[/latex] [latex]2y[/latex])

3. [latex]\frac{−2 − \sqrt{3}}{4}[/latex]

4. 2 [latex]sin[/latex] ([latex]2θ[/latex]) [latex]cos[/latex] ([latex]θ[/latex])

5.

image

 

 

 

Section 4.5 – Solving Trigonometric Equations

1. [latex]x[/latex] = [latex]\frac{7π}{6}[/latex], [latex]\frac{11π}{6}[/latex]

2. [latex]\frac{π}{3}[/latex] ± [latex]πk[/latex] 

3. [latex]cos[/latex] [latex]θ[/latex] = −1, [latex]θ[/latex] = [latex]π[/latex]

4. [latex]\frac{π}{2}[/latex], [latex]\frac{2π}{3}[/latex], [latex]\frac{4π}{3}[/latex], [latex]\frac{3π}{2}[/latex]

Section Exercises

Section 4.1 – Solving Trigonometric Equations with Identities

1. All three functions, [latex]F[/latex], [latex]G[/latex], and [latex]H[/latex], are even.

This is because [latex]F[/latex](−[latex]x[/latex]) = [latex]sin[/latex] (−[latex]x[/latex]) [latex]sin[/latex] (−[latex]x[/latex]) = (−[latex]sin[/latex] [latex]x[/latex])(−[latex]sin[/latex] [latex]x[/latex]) = [latex]sin^2[/latex] [latex]x[/latex] = [latex]F[/latex]([latex]x[/latex]), [latex]G[/latex](−[latex]x[/latex]) = [latex]cos[/latex] (−[latex]x[/latex]) [latex]cos[/latex] (−[latex]x[/latex]) = ([latex]cos[/latex] [latex]x[/latex])([latex]cos[/latex] [latex]x[/latex]) = [latex]cos^2[/latex] [latex]x[/latex] = [latex]G[/latex]([latex]x[/latex]) and [latex]H[/latex](−[latex]x[/latex]) = [latex]tan[/latex] (−[latex]x[/latex]) [latex]tan[/latex] (−[latex]x[/latex]) = (−[latex]tan[/latex] [latex]x[/latex])(−[latex]tan[/latex] [latex]x[/latex]) = [latex]tan^2[/latex] [latex]x[/latex] = [latex]H[/latex]([latex]x[/latex]).

3. When [latex]cos[/latex] [latex]t[/latex] = 0, then [latex]sec[/latex] [latex]t[/latex] = [latex]\frac{1}{0}[/latex], which is undefined.

5. [latex]sin[/latex] [latex]x[/latex]

7. [latex]sec[/latex] [latex]x[/latex]

9. [latex]csc[/latex] [latex]t[/latex]

11. −1

13. [latex]sec^2[/latex] [latex]x[/latex]

15. [latex]sin^2[/latex] [latex]x[/latex] + 1

17. [latex]\frac{1}{sin x}[/latex]

19. [latex]\frac{1}{cot x}[/latex]

21. [latex]tan[/latex] [latex]x[/latex]

23. −4 [latex]sec[/latex] [latex]x[/latex] [latex]tan[/latex] [latex]x[/latex]

25. ± [latex]\sqrt{\frac{{1}{cot^2 x}} + 1}[/latex]

27. ± [latex]\frac{\sqrt{1 − sin^2 x}}{sin x}[/latex]

29. Answers will vary. Sample proof:

[latex]cos[/latex] [latex]x[/latex] − [latex]cos^3[/latex] [latex]x[/latex] = [latex]cos[/latex] [latex]x[/latex] (1 − [latex]cos^2[/latex] [latex]x[/latex]) = [latex]cos[/latex] [latex]x[/latex] [latex]sin^2[/latex] [latex]x[/latex]

31. Answers will vary. Sample proof:

[latex]\frac{1 + sin^2 x}{cos^2 x}[/latex] = [latex]\frac{1}{cos^2 x}[/latex] + [latex]\frac{sin^2 x}{cos^2 x}[/latex] = [latex]sec^2[/latex] [latex]x[/latex] + [latex]tan^2[/latex] [latex]x[/latex] = [latex]tan^2[/latex] [latex]x[/latex] + 1 + [latex]tan^2[/latex] [latex]x[/latex] = 1 + 2 [latex]tan^2[/latex] [latex]x[/latex]

33. Answers will vary. Sample proof:

[latex]cos^2[/latex] [latex]x[/latex] − [latex]tan^2[/latex] [latex]x[/latex] = 1 − [latex]sin^2[/latex] [latex]x[/latex] − ([latex]sec^2[/latex] [latex]x[/latex] − 1) = 1 − [latex]sin^2[/latex] [latex]x[/latex] − [latex]sec^2[/latex] [latex]x[/latex] + 1 = 2 − [latex]sin^2[/latex] [latex]x[/latex] − [latex]sec^2[/latex] [latex]x[/latex]

35. False

37. False

39. Proved with negative and Pythagorean Identities.

41. True. Proof:

3 [latex]sin^2[/latex] [latex]θ[/latex] + 4 [latex]cos^2[/latex] [latex]θ[/latex] = 3 [latex]sin^2[/latex] [latex]θ[/latex] + 3 [latex]cos^2[/latex] [latex]θ[/latex] + [latex]cos^2[/latex] [latex]θ[/latex] = 3 ([latex]sin^2[/latex] [latex]θ[/latex] + [latex]cos^2[/latex] [latex]θ[/latex]) + [latex]cos^2[/latex] [latex]θ[/latex] = 3 + [latex]cos^2[/latex] [latex]θ[/latex]

Section 4.2 – Sum and Difference Identities

1. The cofunction identities apply to complementary angles. Viewing the two acute angles of a right triangle, if one of those angles measures [latex]x[/latex], the second angle measures [latex]\frac{π}{2}[/latex] − [latex]x[/latex]. Then [latex]sin[/latex] [latex]x[/latex] = [latex]cos[/latex] ([latex]\frac{π}{2}[/latex] − [latex]x[/latex]). The same holds for the other cofunction identities. The key is that the angles are complementary.

3. [latex]sin[/latex] (−[latex]x[/latex]) = −[latex]sin[/latex] [latex]x[/latex], so [latex]sin[/latex] [latex]x[/latex] is odd. [latex]cos[/latex] (−[latex]x[/latex]) = [latex]cos[/latex] (0 − [latex]x[/latex]) = [latex]cos[/latex] [latex]x[/latex], so [latex]cos[/latex] [latex]x[/latex] is even.

5. [latex]\frac{\sqrt{2} + \sqrt{6}}{4}[/latex]

7. [latex]\frac{\sqrt{6} − \sqrt{2}}{4}[/latex]

9. −2 − [latex]\sqrt{3}[/latex]

11. −[latex]\frac{\sqrt{2}}{2}[/latex] [latex]sin[/latex] [latex]x[/latex] − [latex]\frac{\sqrt{2}}{2}[/latex] [latex]cos[/latex] [latex]x[/latex]

13. −[latex]\frac{1}{2}[/latex] [latex]cos[/latex] [latex]x[/latex] − [latex]\frac{\sqrt{3}}{2}[/latex] [latex]sin[/latex] [latex]x[/latex]

15. [latex]csc[/latex] [latex]θ[/latex]

17. [latex]cot[/latex] [latex]x[/latex]

19. [latex]tan[/latex] ([latex]\frac{x}{10}[/latex])

21. [latex]sin[/latex] ([latex]a[/latex] − [latex]b[/latex])= ([latex]\frac{4}{5}[/latex])([latex]\frac{1}{3}[/latex]) − ([latex]\frac{3}{5}[/latex])([latex]\frac{2\sqrt{2}}{3}[/latex]) = [latex]\frac{4 − 6\sqrt{2}}{15}[/latex]

[latex]cos[/latex] ([latex]a[/latex] + [latex]b[/latex])= ([latex]\frac{3}{5}[/latex])([latex]\frac{1}{3}[/latex]) − ([latex]\frac{4}{5}[/latex])([latex]\frac{2\sqrt{2}}{3}[/latex]) = [latex]\frac{3 − 8\sqrt{2}}{15}[/latex]

23. [latex]\frac{\sqrt{2} − \sqrt{6}}{4}[/latex]

25. [latex]sin[/latex] [latex]x[/latex]

image

 

 

 

 

 

 

 

 

27. [latex]cot[/latex] ([latex]\frac{π}{6}[/latex] − [latex]x[/latex])

image

 

 

 

 

 

 

 


29
. [latex]cot[/latex] ([latex]\frac{π}{4}[/latex] + [latex]x[/latex])

image

 

 

 

 

 

 

31. [latex]{sin x}{\sqrt{2}}[/latex] + [latex]{cos x}{\sqrt{2}}[/latex]

image

 

 

 

 

 

 

 

33. They are the same.

35. They are the different, try [latex]g[/latex]([latex]x[/latex]) = [latex]sin[/latex] ([latex]9x[/latex]) − [latex]cos[/latex]([latex]3x[/latex]) [latex]sin[/latex] ([latex]6x[/latex]).

37. They are the same.

39. They are the different, try [latex]g[/latex]([latex]θ[/latex]) = [latex]\frac{2 tan θ}{1 − tan^2 θ}[/latex].

41. They are different, try [latex]g[/latex]([latex]x[/latex]) =[latex]\frac{tan x − tan (2x)}{1 + tan (x) tan (2x)}[/latex].

43. True

45. True. Note that [latex]sin[/latex] ([latex]α[/latex] + [latex]β[/latex]) = [latex]sin[/latex] ([latex]π[/latex] − [latex]γ[/latex]) and expand the right hand side.

47.

image

 

 

 

 

49.

image

 

 

51.

image

 

 

 

Section 4.3 – Double-Angle, Half-Angle, and Reduction Formulas

1. Use the Pythagorean identities and isolate the squared term.

3. [latex]\frac{1 − cos x}{sin x}[/latex], [latex]\frac{sin x}{1 + cos x}[/latex], multiplying the top and bottom by [latex]\sqrt{1 − cos x}[/latex] and [latex]\sqrt{1 + cos x}[/latex], respectively.

5. a) [latex]\frac{3\sqrt{7}}{32}[/latex], b) [latex]\frac{31}{32}[/latex], c) [latex]\frac{3\sqrt{7}}{31}[/latex]

7. a) [latex]\frac{\sqrt{3}}{2}[/latex], b) −[latex]\frac{1}{2}[/latex], c) −[latex]\sqrt{3}[/latex]

9. [latex]cos[/latex] [latex]θ[/latex] = −[latex]\frac{2\sqrt{5}}{5}[/latex], [latex]sin[/latex][latex]θ[/latex] = [latex]\frac{\sqrt{5}}{5}[/latex], [latex]tan[/latex][latex]θ[/latex] = −[latex]\frac{1}{2}[/latex], [latex]csc[/latex][latex]θ[/latex] = [latex]\sqrt{5}[/latex], [latex]sec[/latex] [latex]θ[/latex] = −[latex]\frac{\sqrt{5}}{2}[/latex], [latex]cot[/latex] [latex]θ[/latex] = −2

11. 2 [latex]sin[/latex] ([latex]\frac{π}{2})[/latex]

13. [latex]\frac{\sqrt{2 − \sqrt{2}}}{2}[/latex]

15. [latex]\frac{\sqrt{2 − \sqrt{3}}}{2}[/latex]

17. 2 + [latex]\sqrt{3}[/latex]

19. −1 −[latex]\sqrt{2}[/latex]

21. a) [latex]\frac{3\sqrt{13}}{13}[/latex], b) −[latex]\frac{2\sqrt{13}}{13}[/latex], c) −[latex]\frac{3}{2}[/latex] 

23. a) [latex]\frac{\sqrt{10}}{4}[/latex], b) [latex]\frac{\sqrt{6}}{4}[/latex], c) [latex]\frac{\sqrt{15}}{3}[/latex]

25. [latex]\frac{120}{169}[/latex], –[latex]\frac{119}{169}[/latex], –[latex]\frac{120}{119}[/latex]

27. [latex]\frac{2\sqrt{13}}{13}[/latex], −[latex]\frac{3\sqrt{13}}{13}[/latex], −[latex]\frac{2}{3}[/latex]

29. [latex]cos[/latex] (74°)

31. [latex]cos[/latex] (18[latex]x[/latex])

33. 3 [latex]sin[/latex] (10[latex]x[/latex])

35. −2 [latex]sin[/latex] (−[latex]x[/latex]) [latex]cos[/latex] (−[latex]x[/latex]) = −2(−[latex]sin[/latex] ([latex]x[/latex]) [latex]cos[/latex] ([latex]x[/latex])) = [latex]sin[/latex] (2[latex]x[/latex])

37.

image

 

 

 

39. [latex]\frac{1 + cos (12x)}{2}[/latex]

41. [latex]\frac{3 + cos (12x) − 4 cos (6x)}{8}[/latex]

43. [latex]\frac{2 + cos (2x) −2 cos (4x) − cos (6x)}{32}[/latex]

45. [latex]\frac{2 tan x}{1 + tan^2 x}[/latex] = [latex]\frac{\frac{2 sin x}{cos x}}{1 + \frac{sin^2 x}{cos^2 x}}[/latex] = [latex]\frac{\frac{2sin x}{cos x}}{\frac{cos^2 x + sin^2 x}{cos^2 x}}[/latex] = [latex]\frac{2sin x}{cos x}[/latex] ([latex]\frac{cos^2 x}{1}[/latex]) = 2 [latex]sin[/latex] [latex]x[/latex] [latex]cos[/latex] [latex]x[/latex] = [latex]sin[/latex] ([latex]2x[/latex])

47. [latex]\frac{2 sin x cos x}{2 cos^2 x − 1}[/latex] = [latex]\frac{sin (2x)}{cos (2x)}[/latex] = [latex]tan[/latex] (2[latex]x[/latex])

49.

image

 

 

 

51.

image

 

 

 

 

53.

image

 

 

 

Section 4.4 – Sum-to-Product and Product-to-Sum Formulas

1. Substitute [latex]α[/latex] into cosine and [latex]β[/latex] into sine and evaluate.

3. Answers will vary. There are some equations that involve a sum of two trig expressions where when converted to a product are easier to solve. For example: [latex]\frac{sin (3x) + sin x}{cos x}[/latex] = 1.  When converting the numerator to a product the equation becomes: [latex]\frac{2 sin (2x) cos x}{cos x}[/latex] = 1 .

5. 8 ([latex]cos[/latex] (5[latex]x[/latex]) − [latex]cos[/latex] (27[latex]x[/latex]))

7. [latex]sin[/latex] (2[latex]x[/latex]) + [latex]sin[/latex] (8[latex]x[/latex])

9. [latex]\frac{1}{2}[/latex] ([latex]cos[/latex] (6[latex]x[/latex]) − [latex]cos[/latex] (4[latex]x[/latex]))

11. 2 [latex]cos[/latex] (5[latex]t[/latex]) [latex]cos[/latex] [latex]t[/latex]

13. 2 [latex]cos[/latex] (7[latex]x[/latex])

15. 2 [latex]cos[/latex] (6[latex]x[/latex]) [latex]cos[/latex] (3[latex]x[/latex])

17. [latex]\frac{1}{4}[/latex] (1 + [latex]\sqrt{3}[/latex])

19. [latex]\frac{1}{4}[/latex] ([latex]\sqrt{3}[/latex] − 2)

21. [latex]\frac{1}{4}[/latex] ([latex]\sqrt{3}[/latex] − 1)

23. [latex]cos[/latex] (80​°) − [latex]cos[/latex] (120​°)

25. 12 ([latex]sin[/latex] (221​°) + [latex]sin[/latex] (205​°))

27. [latex]\sqrt{2}[/latex] [latex]cos[/latex] (31​°)

29. 2 [latex]cos[/latex] (66.5°) [latex]sin[/latex] (34.5°)

31. 2 [latex]sin[/latex] (−1.5​°) [latex]cos[/latex] (0.5​°)

33.

image

 

 

 

 

35. [latex]sin[/latex] [latex]x[/latex] + [latex]sin[/latex] (3[latex]x[/latex]) = 2 [latex]sin[/latex] ([latex]\frac{4x}{2}[/latex]) [latex]cos[/latex] ([latex]\frac{−2x}{2}[/latex]) = 2 [latex]sin[/latex](2[latex]x[/latex]) [latex]cos[/latex] [latex]x[/latex] = 2 (2 [latex]sin[/latex] [latex]x[/latex] [latex]cos[/latex] [latex]x[/latex]) [latex]cos[/latex] [latex]x[/latex] = 4 [latex]sin[/latex] [latex]x[/latex] [latex]cos^2[/latex] [latex]x[/latex]

37. 2 [latex]tan[/latex] [latex]x[/latex] [latex]cos[/latex] (3[latex]x[/latex]) = [latex]\frac{2 sin x cos (3x)}{cos x}[/latex] = [latex]\frac{2 (.5 (sin (4x) − sin (2x)))}{cos x}[/latex] = [latex]\frac{1}{cos x}[/latex] ([latex]sin[/latex] (4[latex]x[/latex]) − [latex]sin[/latex] (2[latex]x[/latex])) = [latex]sec[/latex] [latex]x[/latex] ([latex]sin[/latex] (4[latex]x[/latex]) − [latex]sin[/latex] (2[latex]x[/latex]))

39. 2 [latex]cos[/latex] (35°) [latex]cos[/latex] (23°), 1.5081

41. −2 [latex]sin[/latex] (33°) [latex]sin[/latex] (11°), −0.2078

43. [latex]\frac{1}{2}[/latex] ([latex]cos[/latex] (99°) − [latex]cos[/latex] (71°)), −0.2410

45. Start with [latex]cos[/latex] [latex]x[/latex] + [latex]cos[/latex] [latex]y[/latex]. Make a substitution and let [latex]x[/latex] = [latex]α[/latex] + [latex]β[/latex] and let [latex]y[/latex] = [latex]α[/latex] − [latex]β[/latex], so [latex]cos[/latex] [latex]x[/latex] + [latex]cos[/latex] [latex]y[/latex] becomes [latex]cos[/latex] ([latex]α[/latex] + [latex]β[/latex]) + [latex]cos[/latex] ([latex]α[/latex] − [latex]β[/latex]) = [latex]cos[/latex] [latex]α[/latex] [latex]cos[/latex] [latex]β[/latex] − [latex]sin[/latex] [latex]α[/latex] [latex]sin[/latex] [latex]β[/latex] + [latex]cos[/latex] [latex]α[/latex] [latex]cos[/latex] [latex]β[/latex] + [latex]sin[/latex] [latex]α[/latex] [latex]sin[/latex] [latex]β[/latex] = 2 [latex]cos[/latex] [latex]α[/latex] [latex]cos[/latex] [latex]β[/latex] . Since [latex]x[/latex] = [latex]α[/latex] + [latex]β[/latex] and [latex]y[/latex] = [latex]α[/latex] − [latex]β[/latex], we can solve for [latex]α[/latex] and [latex]β[/latex] in terms of x and y and substitute in for 2 [latex]cos[/latex] [latex]α[/latex] [latex]cos[/latex] [latex]β[/latex] and get 2 [latex]cos[/latex] ([latex]\frac{x + y}{2}[/latex]) [latex]cos[/latex] ([latex]\frac{x−y}{2}[/latex]).

47. [latex]\frac{cos (3x) + cos x}{cos (3x) − cos x}[/latex] = [latex]\frac{2 cos (2x) cos x}{−2 sin (2x) sin x}[/latex] = − [latex]cot[/latex] (2[latex]x[/latex]) [latex]cot[/latex] [latex]x[/latex]

49.

image

 

 

 

51.

image

 

 

53. [latex]tan[/latex] ([latex]\frac{π}{4}[/latex] − [latex]t[/latex]) = [latex]\frac{tan (\frac{π}{4}) − \text{tan t}}{1 + tan (\frac{π}{4}) tan (t)}[/latex] = [latex]\frac{1 − \text{tan t}}{1 + \text{tan t}}[/latex]

Section 4.5 – Solving Trigonometric Equations

1. There will not always be solutions to trigonometric function equations. For a basic example, [latex]cos[/latex] ([latex]x[/latex]) = −5.

3. If the sine or cosine function has a coefficient of one, isolate the term on one side of the equals sign. If the number it is set equal to has an absolute value less than or equal to one, the equation has solutions, otherwise it does not. If the sine or cosine does not have a coefficient equal to one, still isolate the term but then divide both sides of the equation by the leading coefficient. Then, if the number it is set equal to has an absolute value greater than one, the equation has no solution.

5. [latex]\frac{π}{3}[/latex], [latex]\frac{2π}{3}[/latex]

7. [latex]\frac{3π}{4}[/latex], [latex]\frac{5π}{4}[/latex]

9. [latex]\frac{π}{4}[/latex], [latex]\frac{5π}{4}[/latex]

11. [latex]\frac{π}{4}[/latex], [latex]\frac{3π}{4}[/latex], [latex]\frac{5π}{4}[/latex], [latex]\frac{7π}{4}[/latex]

13. [latex]\frac{π}{4}[/latex], [latex]\frac{7π}{4}[/latex]

15. [latex]\frac{7π}{6}[/latex], [latex]\frac{11π}{6}[/latex]

17. [latex]\frac{π}{18}[/latex], [latex]\frac{5π}{18}[/latex], [latex]\frac{13π}{18}[/latex], [latex]\frac{17π}{18}[/latex], [latex]\frac{25π}{18}[/latex], [latex]\frac{29π}{18}[/latex]

19. [latex]\frac{3π}{12}[/latex], [latex]\frac{5π}{12}[/latex], [latex]\frac{11π}{12}[/latex], [latex]\frac{13π}{12}[/latex], [latex]\frac{19π}{12}[/latex], [latex]\frac{21π}{12}[/latex]

21. [latex]\frac{1}{6}[/latex], [latex]\frac{5}{6}[/latex], [latex]\frac{13}{6}[/latex], [latex]\frac{17}{6}[/latex], [latex]\frac{25}{6}[/latex], [latex]\frac{29}{6}[/latex], [latex]\frac{37}{6}[/latex]

23. 0, [latex]\frac{π}{3}[/latex], [latex]π[/latex], [latex]\frac{5π}{3}[/latex]

25. [latex]\frac{π}{3}[/latex], [latex]π[/latex], [latex]\frac{5π}{3}[/latex]

27. [latex]\frac{π}{3}[/latex], [latex]\frac{3π}{2}[/latex], [latex]\frac{5π}{3}[/latex]

29. 0, [latex]π[/latex]

31. [latex]π[/latex] − [latex]sin^{−1}[/latex] (−[latex]\frac{1}{4}[/latex]), [latex]\frac{7π}{6}[/latex], [latex]\frac{11π}{6}[/latex], [latex]2π[/latex] + [latex]sin^{−1}[/latex] (−[latex]\frac{1}{4}[/latex])

33. [latex]\frac{1}{3}[/latex] ([latex]sin^{−1}[/latex] ([latex]\frac{9}{10}[/latex])), [latex]\frac{π}{3}[/latex] − [latex]\frac{1}{3}[/latex] ([latex]sin^{−1}[/latex] ([latex]\frac{9}{10}[/latex])), [latex]\frac{2π}{3}[/latex] + [latex]\frac{1}{3}[/latex] ([latex]sin^{−1}[/latex] ([latex]\frac{9}{10}[/latex])), [latex]π[/latex] − [latex]\frac{1}{3}[/latex] ([latex]sin^{−1}[/latex] ([latex]\frac{9}{10}[/latex])), [latex]\frac{4π}{3}[/latex] + [latex]\frac{1}{3}[/latex] ([latex]sin^{−1}[/latex] ([latex]\frac{9}{10}[/latex])), [latex]\frac{5π}{3}[/latex] − [latex]\frac{1}{3}[/latex] ([latex]sin^{−1}[/latex] ([latex]\frac{9}{10}[/latex]))

35. 0

37. [latex]θ[/latex] = [latex]sin^{−1}[/latex] ([latex]\frac{2}{3}[/latex]), [latex]π[/latex]  − [latex]sin^{−1}[/latex] ([latex]\frac{2}{3}[/latex]), [latex]π[/latex]  + [latex]sin^{−1}[/latex] ([latex]\frac{2}{3}[/latex]), [latex]2π[/latex] − [latex]sin^{−1}[/latex] ([latex]\frac{2}{3}[/latex])

39. [latex]\frac{3π}{2}[/latex], [latex]\frac{π}{6}[/latex], [latex]\frac{5π}{6}[/latex]

41. 0, [latex]\frac{π}{3}[/latex], [latex]π[/latex], [latex]\frac{4π}{3}[/latex]

43. There are no solutions.

45. [latex]cos^{−1}[/latex] ([latex]\frac{1}{3}[/latex] (1 − [latex]\sqrt{7}[/latex])), [latex]2π[/latex] − [latex]cos^{−1}[/latex] ([latex]\frac{1}{3}[/latex] (1 − [latex]\sqrt{7}[/latex]))

47. [latex]tan^{−1}[/latex] ([latex]\frac{1}{2}[/latex] ([latex]\sqrt{29}[/latex] − 5)), [latex]π[/latex] + [latex]tan^{−1}[/latex] ([latex]\frac{1}{2}[/latex] (−[latex]\sqrt{29}[/latex] − 5)), [latex]π[/latex] + [latex]tan^{−1}[/latex] ([latex]\frac{1}{2}[/latex] ([latex]\sqrt{29}[/latex] − 5)), [latex]2π[/latex] + [latex]tan^{−1}[/latex] ([latex]\frac{1}{2}[/latex] (−[latex]\sqrt{29}[/latex] − 5))

49. There are no solutions.

51. There are no solutions.

53. 0, [latex]\frac{2π}{3}[/latex], [latex]\frac{4π}{3}[/latex]

55. [latex]\frac{π}{4}[/latex], [latex]\frac{3π}{4}[/latex], [latex]\frac{5π}{4}[/latex], [latex]\frac{7π}{4}[/latex]

57. [latex]sin^{−1}[/latex] ([latex]\frac{3}{5}[/latex]), [latex]\frac{π}{2}[/latex], [latex]π[/latex] − [latex]sin^{−1}[/latex] ([latex]\frac{3}{5}[/latex]), [latex]\frac{3π}{2}[/latex]

59. [latex]cos^{−1}[/latex] (−[latex]\frac{1}{4}[/latex]), [latex]2π[/latex] − [latex]cos^{−1}[/latex] (−[latex]\frac{1}{4}[/latex])

61.  [latex]\frac{π}{3}[/latex], [latex]cos^{−1}[/latex] (−[latex]\frac{3}{4}[/latex]), [latex]2π[/latex] − [latex]cos^{−1}[/latex] (−[latex]\frac{3}{4}[/latex]), [latex]\frac{5π}{3}[/latex]

63. [latex]cos^{−1}[/latex] ([latex]\frac{3}{4}[/latex]), [latex]cos^{−1}[/latex] (−[latex]\frac{2}{3}[/latex]), [latex]2π[/latex] − [latex]cos^{−1}[/latex] (−[latex]\frac{2}{3}[/latex]), [latex]2π[/latex] − [latex]cos^{−1}[/latex] (−[latex]\frac{3}{4}[/latex])

65. 0, [latex]\frac{π}{2}[/latex], [latex]π[/latex], [latex]\frac{3π}{2}[/latex]

67. [latex]\frac{π}{3}[/latex], [latex]cos^{−1}[/latex] (−[latex]\frac{1}{4}[/latex]), [latex]2π[/latex] − [latex]cos^{−1}[/latex] (−[latex]\frac{1}{4}[/latex]), [latex]\frac{5π}{3}[/latex]

69. There are no solutions.

71. [latex]π[/latex] + [latex]tan^{−1}[/latex] (−2), [latex]π[/latex] + [latex]tan^{−1}[/latex] (−[latex]\frac{3}{2}[/latex]), [latex]2π[/latex] + [latex]tan^{−1}[/latex] (−2), [latex]2π[/latex] + [latex]tan^{−1}[/latex] (−[latex]\frac{3}{2}[/latex])

73. [latex]sin^{−1}[/latex] ([latex]\frac{1}{4}[/latex]), [latex]π[/latex] − [latex]sin^{−1}[/latex] ([latex]\frac{1}{4}[/latex]), [latex]\frac{3π}{2}[/latex]

75. [latex]\frac{π}{2}[/latex], [latex]\frac{3π}{2}[/latex]

77. There are no solutions.

79. 0, [latex]\frac{π}{2}[/latex], [latex]π[/latex], [latex]\frac{3π}{2}[/latex]

81. There are no solutions.

83. 7.2°

85. 5.7°

87. 82.4°

89. 31.0°

91. 88.7°

93. 59.0°

95. 36.9°

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Topics in Precalculus Copyright © by Sage Bentley; An Do; Carolyn Luna; Stephen Pena; and Phillip Saldivar is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book